000 03720nam a22004693i 4500
001 EBC6541197
003 MiAaPQ
005 20230120142325.0
006 m o d |
007 cr cnu||||||||
008 211209s2021 xx o ||||0 eng d
020 _a9780429944529
_q(electronic bk.)
020 _z9781138597327
035 _a(MiAaPQ)EBC6541197
035 _a(Au-PeEL)EBL6541197
035 _a(OCoLC)1246576767
040 _aMiAaPQ
_beng
_erda
_epn
_cMiAaPQ
_dMiAaPQ
050 4 _aQH324.2 .R363 2021
082 0 _a570.113
100 1 _aRaman, Karthik.
245 1 3 _aAn introduction to computational systems biology :
_bsystems-level modelling of cellular networks.
264 1 _aMilton :
_bCRC Press LLC,
_c2021.
264 4 _c©2021.
300 _a1 online resource (359 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aChapman and Hall/CRC Computational Biology Ser.
505 0 _aCover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- CHAPTER 1: Introduction to modelling -- 1.1. WHAT IS MODELLING? -- 1.1.1. What are models? -- 1.2. WHYBUILD MODELS? -- 1.2.1. Why model biological systems? -- 1.2.2. Why systems biology? -- 1.3. CHALLENGES IN MODELLING BIOLOGICAL SYSTEMS -- 1.4. THE PRACTICE OF MODELLING -- 1.4.1. Scope of the model -- 1.4.2. Making assumptions -- 1.4.3. Modelling paradigms -- 1.4.4. Building the model -- 1.4.5. Model analysis debugging and (in)validation -- 1.4.6. Simulating the model -- 1.5. EXAMPLES OF MODELS -- 1.5.1. Lotka-Volterra predator-prey model -- 1.5.2. SIR model: A classic example -- 1.6. TROUBLESHOOTING -- 1.6.1. Clarity of scope and objectives -- 1.6.2. The breakdown of assumptions -- 1.6.3. Is my model fit for purpose? -- 1.6.4. Handling uncertainties -- EXERCISES -- REFERENCES -- FURTHER READING -- PART I: Static Modelling -- CHAPTER 2: Introduction to graph theory -- 2.1. BASICS -- 2.1.1. History of graph theory -- 2.1.2. Examples of graphs -- 2.2. WHY GRAPHS? -- 2.3. TYPES OF GRAPHS -- 2.3.1. Simple vs. non-simple graphs -- 2.3.2. Directed vs. undirected graphs -- 2.3.3. Weighted vs. unweighted graphs -- 2.3.4. Other graph types -- 2.3.5. Hypergraphs -- 2.4. COMPUTATIONAL REPRESENTATIONS OF GRAPHS -- 2.4.1. Data structures -- 2.4.2. Adjacency matrix -- 2.4.3. The Laplacian matrix -- 2.5. GRAPH REPRESENTATIONS OF BIOLOGICAL NETWORKS -- 2.5.1. Networks of protein interactions and functionalassociations -- 2.5.2. Signalling networks -- 2.5.3. Protein structure networks -- 2.5.4. Gene regulatory networks -- 2.5.5. Metabolic networks -- 2.6. COMMON CHALLENGES &amp -- TROUBLESHOOTING -- 2.6.1. Choosing a representation -- 2.6.2. Loading and creating graphs -- 2.7. SOFTWARE TOOLS -- EXERCISES -- REFERENCES -- FURTHER READING.
505 8 _a13.4. SOFTWARE TOOLS.
588 _aDescription based on publisher supplied metadata and other sources.
590 _aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2021. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
650 0 _aMolecular biology-Data processing.
650 0 _aBiological systems-Computer simulation.
650 0 _aSystems biology.
650 0 _aComputational biology.
776 0 8 _iPrint version:
_aRaman, Karthik
_tAn Introduction to Computational Systems Biology
_dMilton : CRC Press LLC,c2021
_z9781138597327
797 2 _aProQuest (Firm)
830 0 _aChapman and Hall/CRC Computational Biology Ser.
856 4 0 _uhttps://ebookcentral.proquest.com/lib/uwestlon/detail.action?docID=6541197
_zOpen e-book
942 _2ddc
_n0
999 _c64445
_d64445