000 | 01516nam a22003498i 4500 | ||
---|---|---|---|
001 | 703515 | ||
005 | 20210719181735.0 | ||
008 | 161123s2016 sz a f 000|0|eng|d | ||
020 |
_a9783319455808 (hbk.) : _c£42.99 |
||
035 | _a(StDuBDS)9783319455808 | ||
040 |
_aStDuBDS _beng _cStDuBDS _erda |
||
072 | 7 |
_aMUS _2eflch |
|
072 | 7 |
_aMUS _2ukslc |
|
082 | 0 | 4 |
_a780'.0515723 _223 |
100 | 1 |
_aAmiot, Emmanuel, _eauthor. |
|
245 | 1 | 0 |
_aMusic through fourier space : _bdiscrete Fourier transform in music theory / _cEmmanuel Amiot. |
264 | 1 |
_aCham : _bSpringer, _c2016. |
|
300 |
_a206 pages : _billustrations (black and white, and colour) ; _c24 cm. |
||
336 |
_atext _2rdacontent |
||
336 |
_astill image _2rdacontent |
||
337 |
_aunmediated _2rdamedia |
||
338 |
_avolume _2rdacarrier |
||
490 | 1 | _aComputational music science | |
520 | 8 | _aThis volume explains the state of the art in the use of the discrete Fourier transform (DFT) of musical structures such as rhythms or scales. In particular, the author explains the DFT of pitch-class distributions, homometry and the phase retrieval problem, nil Fourier coefficients and tilings, saliency, extrapolation to the continuous Fourier transform and continuous spaces, and the meaning of the phases of Fourier coefficients. | |
521 | _aSpecialized. | ||
650 | 0 |
_aMusic _xMathematics. |
|
650 | 0 | _aFourier transformations. | |
650 | 7 |
_aMusic. _2eflch |
|
650 | 7 |
_aMusic. _2ukslc |
|
830 | 0 | _aComputational music science. | |
942 | _n0 | ||
999 |
_c53005 _d53005 |