A first course in machine learning / Simon Rogers, Mark Girolami.
Material type: TextSeries: Chapman & Hall/CRC machine learning & pattern recognition seriesPublisher: Boca Raton : CRC Press, [2017]Publisher: ©2017Edition: 2nd editionDescription: xxix, 397 pages : illustrations (black and white)Content type: text | still image Media type: computer Carrier type: online resourceISBN: 9781498738545 (e-book)Subject(s): Machine learning | Computers and IT | Automatic control engineering | Machine learning | Probability & statistics | Databases | Econometrics & economic statistics | Games development & programming | Data mining | Mathematical theory of computationGenre/Form: Online access: Open e-book Also available in printed form ISBN 9781498738484Summary: Offering a complete introduction to the fundamental concepts underlying machine learning theory, this text presents modern methods and mathematical foundations needed to enable further study. The text requires minimal mathematical prerequisites, making it appropriate for students who are new to the field. "A First Course in Machine Learning by Simon Rogers and Mark Girolami is the best introductory book for ML currently available. It combines rigor and precision with accessibility, starts from a detailed explanation of the basic foundations of Bayesian analysis in the simplest of settings, and goes all the way to the frontiers of the subject such as infinite mixture models, GPs, and MCMC."-Devdatt Dubhashi, Professor, Department of Computer Science and Engineering, Chalmers University, Sweden "This textbook manages to be easier to read than other comparable books in the subject while retaining all the rigorous treatment needed. The new chapters put it at the forefront of the field by covering topics that have become mainstream in machine learning over the last decade."-Daniel Barbara, George Mason University, Fairfax, Virginia, USA "The new edition of A First Course in Machine Learning by Rogers and Girolami is an excellent introduction to the use of statistical methods in machine learning. The book introduces concepts such as mathematical modeling, inference, and prediction, providing `just in time' the essential background on linear algebra, calculus, and probability theory that the reader needs to understand these concepts."-Daniel Ortiz-Arroyo, Associate Professor, Aalborg University Esbjerg, Denmark "I was impressed by how closely the material aligns with the needs of an introductory course on machine learning, which is its greatest strength.Overall, this is a pragmatic and helpful book, which is well-aligned to the needs of an introductory course and one that I will be looking at for my own students in coming months."-David Clifton, University of Oxford, UK "The first edition of this book was already an excellent introductory text on machine learning for an advanced undergraduate or taught masters level course, or indeed for anybody who wants to learn about an interesting and important field of computer science. The additional chapters of advanced material on Gaussian process, MCMC and mixture modeling provide an ideal basis for practical projects, without disturbing the very clear and readable exposition of the basics contained in the first part of the book." -Gavin Cawley, Senior Lecturer, School of Computing Sciences, University of East Anglia, UK "This book could be used for junior/senior undergraduate students or first-year graduate students, as well as individuals who want to explore the field of machine learning.The book introduces not only the concepts but the underlying ideas on algorithm implementation from a critical thinking perspective."-Guangzhi Qu, Oakland University, Rochester, Michigan, USAItem type | Current library | Home library | Class number | Status | Date due | Barcode | Item reservations | |
---|---|---|---|---|---|---|---|---|
E-book | Electronic publication | Electronic publication | Available |
Includes ebook access.
Previous edition: 2012.
"A Chapman & Hall book."
Includes bibliographical references and index.
Offering a complete introduction to the fundamental concepts underlying machine learning theory, this text presents modern methods and mathematical foundations needed to enable further study. The text requires minimal mathematical prerequisites, making it appropriate for students who are new to the field. "A First Course in Machine Learning by Simon Rogers and Mark Girolami is the best introductory book for ML currently available. It combines rigor and precision with accessibility, starts from a detailed explanation of the basic foundations of Bayesian analysis in the simplest of settings, and goes all the way to the frontiers of the subject such as infinite mixture models, GPs, and MCMC."-Devdatt Dubhashi, Professor, Department of Computer Science and Engineering, Chalmers University, Sweden "This textbook manages to be easier to read than other comparable books in the subject while retaining all the rigorous treatment needed. The new chapters put it at the forefront of the field by covering topics that have become mainstream in machine learning over the last decade."-Daniel Barbara, George Mason University, Fairfax, Virginia, USA "The new edition of A First Course in Machine Learning by Rogers and Girolami is an excellent introduction to the use of statistical methods in machine learning. The book introduces concepts such as mathematical modeling, inference, and prediction, providing `just in time' the essential background on linear algebra, calculus, and probability theory that the reader needs to understand these concepts."-Daniel Ortiz-Arroyo, Associate Professor, Aalborg University Esbjerg, Denmark "I was impressed by how closely the material aligns with the needs of an introductory course on machine learning, which is its greatest strength.Overall, this is a pragmatic and helpful book, which is well-aligned to the needs of an introductory course and one that I will be looking at for my own students in coming months."-David Clifton, University of Oxford, UK "The first edition of this book was already an excellent introductory text on machine learning for an advanced undergraduate or taught masters level course, or indeed for anybody who wants to learn about an interesting and important field of computer science. The additional chapters of advanced material on Gaussian process, MCMC and mixture modeling provide an ideal basis for practical projects, without disturbing the very clear and readable exposition of the basics contained in the first part of the book." -Gavin Cawley, Senior Lecturer, School of Computing Sciences, University of East Anglia, UK "This book could be used for junior/senior undergraduate students or first-year graduate students, as well as individuals who want to explore the field of machine learning.The book introduces not only the concepts but the underlying ideas on algorithm implementation from a critical thinking perspective."-Guangzhi Qu, Oakland University, Rochester, Michigan, USA
Also available in printed form ISBN 9781498738484
Electronic reproduction. Askews and Holts. Mode of access: World Wide Web.
There are no comments on this title.